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Green function for an extended, uniformly charged nucleus 
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Abstract. An exact, closed solution for the Coulomb Green function of an extended, 
uniformly charged nucleus is presented. 

1. Introduction 

In calculations of radiative electron capture (Martin and Glauber 1958), radiative muon 
capture (Rood et a1 1974), and radiative pion capture as well as in calculations of 
electromagnetic corrections to the induced pseudoscalar term in ordinary muon capture 
(Fulcher and Mukhopadhyay 1973, 1975, Mukhopadhyay 1977), the Green function 
for the Coulomb field is needed to determine the capture rate. If the nuclear charge 
distribution is taken to be of a Saxon-Woods type, only numerical solutions can be 
generated for both the wavefunction and the Green function. In the case of a uniform 
charge distribution, we have shown that an exact closed solution for the wavefunction 
exists (Yano and Yano 1972). In this paper, we show a corresponding solution also 
exists for the Green function, a fact that does not seem to be generally recognised (see, 
for example, Fulcher and Mukhopadhyay 1973, 1975). This solution is of some 
practical use since the leading correction to the physical finite size effect is given by the 
uniform charge distribution (see, for example, Fujii et a1 1968). 

In § 2, we write down the equation for the Green function and consider solutions of 
the corresponding homogeneous solutions. In an appendix, we give expressions for the 
connection coefficients. 

2. Homogeneous solutions 

The differential equation which defines the Green function for a uniform charge 
distribution is 

[-(h2/2m)V2+ v ( r ) - E ] G ~ ( r ,  r’)  = - 8 ( r - r ’ )  

where 

-(Ze2/2R,)(3 - r2 /Rf) ,  O S r c R , ,  
r 2 R,. 
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Ki and 7’1 are solutions of the homogeneous radial equation and are the objects to be 
determined. To this end, we must separately consider inside and outside solutions of 
the homogeneous radial equation. 

2.1. Inside solutions 

The inside (r < R,) homogeneous radial equation is 

where 

p 2  = -2mE/h2.  

In equation (2.5), p2  is positive (negative) if E is negative (positive). We discuss the 
negative energy case as this is the situation found in the processes mentioned above. An 
obvious modification is needed for the positive energy case. 

If the modified radial function xin is introduced by 

X i n  = pR,n, 

p = A  1’2r, 

A’  = mZe2/h2R9,  

y = ( - p 2 + 3 m Z e 2 / h 2 R c ) / 2 A ,  

then equation (2.4) becomes 

d2xin/dp2 + [ 2 y  - p 2 -  1(1+  1)/p2]xin= 0. (2.10) 

The further substitution 

(2.11) 

(2.12) 

2 z = p  
(1+11/2 

X i n =  z exp(-z/2)L(z), 

converts equation (2.10) to 

z d2L/dZ2 + ( I  + $ ) - z )  dL/dz -:(21+ 3 - 2 y ) L  = 0 (2.13) 

which is Kummer’s equation (Abramowitz and Stegun 1965). 
The two independent solutions of equation (2.13) are M(u,  b, z )  and U ( a ,  6 ,  z )  with 

U = (21 + 3 - 2 y ) / 4 ,  

b = l + $ .  

(2.14) 

(2.15) 

Therefore, the two corresponding solutions of the inside radial equations are 

RfA’ = ( A  1/2r)i  exp(-iAr2)M(a, b, Ar’), 

Rf:’ = (A1’2r)f exp(-$Ar2)U(u, b, Ar2). 

(2.16) 

(2.17) 
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2.2. Outside solutions 

For r > R,, the homogeneous equation is that for a point charge. The  solutions are 
standard and are given by the Whittaker functions. It is, however, more convenient for 
our purposes to express the solutions in terms of Kummer functions. Explicitly, 

Rbtl, = (2pr) '  exp(-pr)M(c, d,  2pr) ,  

Rb?,?t = (2pr) '  exp(-pr)U(c,  d,  2pr) ,  

where 

c = 1 + 1 - q, 

d = 2 1 + 2 ,  

q = mZe' /h 'p .  

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

3. The Green function 

From their definition in equation (2.3),  Ki(r,) must be finite a t  the origin and Tl(r,) 
must vanish at  infinity. W e  need the corresponding behaviour of M and U. For the 
inside solutions, as r + 0, 

M ( a ,  b, Ar') + 1, 

~ ( a ,  b, A r 2 ) +  r ( i+t ) (Ar ' ) - ' - : / r (a) .  

It follows that Kl(r,) is given by equation (2.16) when r< is less than R,. 

M(c ,  d ,  2pr)  + T ( d )  exp(2pr) (2pr) - ' - ' -" /T(c)  

U(c,  d,  2pr)  + (2pr)-'-'+''. 

For the outside solutions, as r + a, 

(3.1) 

(3 .2)  

It follows that T/(r,) is given by equation (2.19) for r> > R,. 

written as follows: 
The  expressions for Ki(r,) and Tl(r,) when r< > R,  and r> < R,  respectively can be 

The  coefficients A ,  B, C, D are determined from the condition of continuity at 
r = r ' =  R,. They are ratios of Wronskians evaluated at  R,  and their derivation is given 
in the appendix. 

W e  can now state the results for K,  and T,: 

(A '"r)' exp(- tAr*)M(a,  b, Ar'), r s R c  (3.7) 
(2w.r)' exp(-pr)(AM(c, d,  2 ~ )  + BU(c, d ,  2 p r ) ) ,  r 2 R c  (3.8) 
(A 1'2r)' exp(- $Ar2)(CM(a,  b, Ar ' )  + DU(a ,  b, Ar')), 

R ( r )  = { 
Tl(r) = 1 
with A, B, C, D given by equations (A.12)-(A.15).  

r S R ,  (3.9)  
( 2 ~ ) '  exp(-w)U(c ,  d,  2 v ) ,  r*R, (3.10) 
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The coefficient CL of equation (2.3) can be obtained in the usual way by integrating 
over the 6 function discontinuity. The result is 

Ci = 2 p U I  + 1 - q)/(Ar(21+ 2)). (3.11) 

Finally, we show that when R,+ 0, the Green function reduces to that for the point 
charge. For this case, we need to use only the part of KI(r) and Tl(r) with r > R,, in 
equations (3.8),  (3.10). Therefore, we consider only the coefficients A and B given by 
equations (A.12), (A.13). A simple calculation shows that 

(3.12) 

(3.13) 

as R,+O. 
The fact that A diverges as R, .+ 0 is not a problem as the A which appears in K I  is 

cancelled by the A in the denominator of Cl, equation (3.11). The Green function 
therefore becomes 

(3.14) 

which is exactly the Green function for a point charge. 

Acknowledgments 

I t  is a pleasure to thank H P C Rood for useful discussions. One of us (AFY) also 
acknowledges support from a CSULB Foundation Summer grant. This work was 
supported in part by a Research Corporation grant. 

Appendix. Connection coefficients 

where the Wronskian of the outside solutions is 

The other four Wronskians are 
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In the preceding calculations, we have used the equations 

= (a/b)M(a + 1, b + 1, z )  dM(a,  6, z )  
dz 

(A. 10) 

(A.11) 

The connection coefficients are explicitly, 

(A. 15) 
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